COMPARATIVE METHODOLOGIES FOR ESTIMATING ON-WATER RESPONSE COSTS FOR MARINE OIL SPILLS

Dagmar Schmidt Etkin Environmental Research Consulting 750 Main Street Winchester, Massachusetts 01890

ABSTRACT: This study reviews three alternative oil spill response cost estimation methodologies as applied to hypothetical spill scenarios in the Gulf of Mexico and San Francisco Bay, California: (1) a model derived from historical data on various spill factors that drive overall cleanup costs; (2) a method using U.S. Area Contingency Plan (ACP) spill scenario plans to estimate costs for mechanical containment and recovery costs to be extrapolated to other hypothetical spill scenarios; and (3) a method that estimates the labor and equipment required for mechanical containment and recovery operations and the resulting costs. A method for estimating dispersant costs is also discussed. The easy-to-use model derived from historical data is shown to be a good cost estimation tool.

Cleanup cost estimation methods

Cleanup cost factor model based on historical spill data. Historical oil spill cost data collected by Environmental Research Consulting and studies conducted by a number of other researchers have shown that per-unit (per-gallon or per-ton) oil spill cleanup costs vary considerably by: location (particularly with regard to shoreline proximity and national jurisdiction), oil type, spill size, and cleanup methodology employed (Allen and Ferek, 1993; Etkin, 1998a, b, c; Harper *et al.*, 1995; Moller *et al.*, 1987; Monnier, 1994; Peck *et al.*, 1996).

Previous papers by this author (Etkin, 1999, 2000) have examined the relationships between a number of factors to determine a more precise per-unit cleanup cost for a particular oil spill scenario. In the latter study, rudimentary formulae were derived:

 $C_{ui} = C_{li} t_i o_i m_i s_i$; $C_{li} = r_i l_i C_n$; and $C_{ei} = C_{ui} A_i$ (1) where C_{ui} is response cost per unit for scenario, *i*; C_{li} is cost per unit spilled for scenario, *I*; C_n is general cost per unit spilled in nation, *n*; C_{ei} is estimated total response cost for scenario, *I*; t_i is oil type modifier factor for scenario, *i*; o_i is shoreline oiling modifier factor for scenario, *i*; m_i is cleanup methodology factor for scenario, *i*; s_i is spill size modifier factor for scenario, *i*; r_i is regional location modifier factor for scenario, *i*; l_i is local location modifier for scenario, *i*; A_i is specified spill amount for scenario, *i*.

The modifiers for the various factors are shown in Tables 1 and 2. The algorithm and modifiers were derived from analyses of over 200 oil spill case studies, which revealed that:

- Per-unit costs were higher for spills involving more persistent oils.
- Per-unit costs were highest for responses relying on mechanical and manual methods.

- Per-unit costs were higher for smaller spills.
- Per-unit costs were higher for nearshore and port spills than for offshore spills.
- Per-unit costs were higher for spills involving extensive shoreline oiling.
- Per-unit costs varied by region and were highest for Asia, followed by the United States.

Shoreline cleanup operations are indirectly covered since the model presents cleanup costs as a whole, but relative degree shoreline oiling is one of the modifying factors. For spill scenarios with extensive shoreline impact, shoreline cleanup operation costs can be estimated by assuming that 80–90% of total costs are for shoreline cleanup (based on Etkin 1998b, c; Unpublished research project, P. Franken, University of Arizona, 1994). Conversely, to isolate mechanical recovery costs, one can estimate that 10–20% of the total spill response costs are for these operations.

Area Contingency Plan spill scenario mechanical response operation cost extrapolations. Area Contingency Plans (ACPs) in the United States often contain hypothetical spill scenarios, which outline the resources and strategies that would be required in a response. The responses described for each scenario generally cover the most immediate aspects of mechanical containment and recovery operations, and do not allude to dispersant application operations or shoreline cleanup operations. A survey of ACPs¹ revealed a wide spectrum of spill scenarios ranging from nonexistent (or not yet entered) to fairly detailed descriptions of response strategy.

Scenario response strategies were used to estimate cleanup response costs for other hypothetical spill scenarios by extrapolation for *spill amount* regardless of other factors, such as oil type (Figure 1). This involved taking described equipment and labor allocations and calculating costs based on average U.S. Coast Guard (USCG) district-specific equipment and labor costs in USCG Basic Ordering Agreements (BOAs) as presented in Etkin (1998b) converted into 1999 U.S. dollar values. The labor costs take into account different worker types and respective pay scales (regular, premium, and overtime work) in different regions as reflected by USCG district.

The limitations to this approach include the fact that the ACP scenarios tend to be very specific in terms of location and oil type and to involve relatively small spill sizes, making it difficult to relate them to hypothetical situations. For example, a 5,000-gallon No. 2 fuel spill could not easily be projected to a 10 million-gallon crude oil spill even for the site. In addition, ACPs rarely stipulate the *estimated time* to complete mechanical operations.

Country	US\$/gallon	US\$/ton
North America	USA/gallon	039/1011
Canada	22.14	6 508 14
United States	22.14	25 614 63
Average	67.13	23,014.03
Average	07.41	19,014.05
Argonting	7 9 7	2 2 1 6 6 1
Brogil	/.0/	2,510.01
Brazil	19.04	5,600.72
Chile	3.10	910.42
Mexico	2.88	850.32
St. Kitts/Nevis	10.48	3,085.81
Uruguay	11.4/	3,368.25
Venezuela	40.20	1,817.83
Average	10.41	3,055.76
Africa		
Egypt	15.06	4,428.90
Morocco	32.89	9,675.07
Mozambique	0.04	6.09
Nigeria	6.02	1,766.75
South Africa	9.92	2,917.54
Average	10.75	3,163.93
Europe		
Denmark	38.04	11,180.41
Estonia	23.20	6,820.62
Finland	7.19	2,115.29
France	7.83	2,301.58
Germany	36.41	10,702.67
Greece	29.03	8,530.29
Ireland	16.35	4,807.49
Italy	22.26	6,541.19
Latvia	31.34	9,212.35
Lithuania	0.26	78.12
Netherlands	22.63	6,655.37
Norway	78.61	23,118.08
Spain	1.48	438.68
Sweden	53.22	15.642.36
United Kingdom	10.48	3.082.80
Yugoslavia	5.15	1.541.40
Average	36.75	10.807.83
South Pacific		
Australia	20.36	5 991 33
New Zealand	9.50	2,791,35
Average	19.38	5 698 88
Middle Fast	17.50	5,070.00
Israel	7 87	2 313 60
IIAE	2.16	636.00
Average	2.10	1 057 50
Asia	5.00	1,057.50
Hong Kong	15 14	1 152 01
Ionon	13.14	4,432.94
Japan Malaysia	260.00	54,019.92 76 590 20
Dhilippingg	200.90	10,389.29
Sinconora	2.31	0/0.31
Singapore	1.52	390.01
South Korea	43.60	12,814.90
Average	93.53	27,495.83

Table 1. Average per-unit marine oil spill cleanup costs by nation/region in 1999 U.S. dollars.

Note: Derived from Etkin (2000).

	3.6 11.0
Cost factor	Modifier
Oil type	
No. 2 fuel (diesel)	0.18
Light crude	0.32
No. 4 fuel, No. 5 fuel	1.82
Crude	0.55
Heavy crude	0.65
No. 6 fuel	0.71
Spill size	
<10,000 gal (<34 t)	2.00
10,000–100,000 gal (34–340 t)	0.65
100,000–500,000 g (340–1,700 t)	0.27
500,000-1,000,000 gal (1,700-3,400 t)	0.15
1-10 million gal (3,400-34,000 t)	0.05
(>10 million gal (>34,000 t)	0.01
Location type	
Nearshore	1.46
In port	1.28
Offshore	0.46
Primary method cleanup	
Dispersants	0.46
In situ burning	0.25
Mechanical	0.92
Manual	1.89
Natural cleansing	0.10
Shoreline oiling	
0–1 km	0.47
2–15 km	0.54
20–90 km	0.61
100 km	1.06
500 km	1.53

Note: Derived from Etkin (2000).

Cost estimations based on labor/equipment requirements with modifications. A modified approach involved the study of ACP scenarios and the *Response Plan Equipment Caps Review* (USCG, 1999), along with reviews of historical case studies to estimate the effort required—worker-days and equipment required for on-water mechanical containment and recovery operations. Again, labor and equipment costs were based on USCG BOAs.

The work estimations were coupled with information on the general behavior of different oil types and amounts using the National Oceanic and Atmospheric Administration's (NOAA) Automated Data Inquiry for Oil Spills (ADIOS) software. The oil behavior data were used to modify the estimated response work estimates for slick spread, dispersion, evaporation, and emulsification by the time mechanical operations were underway.

The following assumptions (based on Michel and Cotsapas, 1997) were applied:

- Fifty percent of *floating* oil could be recovered or attempted to be recovered.
- Dispersed and/or evaporated oil could not be recovered by mechanical recovery techniques.
- Emulsification increased oily liquid volume by four. No. 2 fuel oil would not emulsify.

 Table 2. Cleanup cost factor modifiers.

Figure 1. Mechanical recovery costs for ACP scenarios in 1999 U.S. dollars (excluding disposal, shoreline, and equipment decontamination costs).

- Costs for shore-based support for skimming systems were 12% of on-water costs.
- Helicopter overflights (one for spills under 500,000 gallons; two for larger spills) were charged for 12-hour days for the entire time oil was present on water surface.
- Cleanup crews worked for 12-hour workdays.
- Wages were paid as 67% straight wages, 20% premium wages, and 13% overtime wages.
- Crews consisted of 1% project managers, 3% supervisors, 67% skilled laborers, and 29% unskilled laborers.
- Costs for labor/equipment increased annually as per the average U.S. Consumer Price Index.
- Skimming capacity was 20% of nameplate capacity (effective daily recovery capacity [EDRC]) to account for various environmental conditions, as per USCG mandates.

• Spilled oil spread as described in the tables in Tables 3 and 4.

The estimation methods were applied to hypothetical spill scenarios involving two different oil types (No. 2 fuel and crude oil) in two locations (Gulf of Mexico off Galveston Bay, Texas and San Francisco Bay, California) for five different spill amounts (10,000 gal/34 t; 100,000 gal/340 t; 500,000 gal/1,700 t; 5 million gal/17,000 t; 10 million gallons/34,000 t).

Dispersant application costs. Cost estimations for dispersant applications were not possible using the ACPs since dispersant use was not described in any of the plans examined. Dispersant use could be stipulated in the historical data model to provide a response cost estimate when dispersants are used as the *primary* response strategy. This method was applied to the hypothetical spill scenarios.

Table 3. Estimation of spill amount from slick size.				
Estimated fresh slick sizeSpill size (gal)for 0.1 mm-thick slicks (mile2)1				
10,000	0.98			
100,000	9.80			
500,000	49.02			
5,000,000	490.20			
10,000,000	2,450.98			

¹Assuming continuous spreading without containment. Source: Etkin (1999c).

Table 4. Estimated slick size for	specified a	spill	scenario	sizes.
-----------------------------------	-------------	-------	----------	--------

		Thickness	Volume	Volume	Volume
Type of oil	Appearance	(mm)	(m^{3}/km^{2})	(gal/km ²)	(gal/mile ²)
Fresh	Black-dark brown	0.1^{1}	100	26,420	10,200
Sheen	Rainbow	0.0003	0.3	80	207
Sheen	Silvery	0.0001	0.1	26	16
Mousse (60% water)	Frothy brown/orange	>1	$>1,000^{2}$	$105,000^2$	$271,950^2$

¹ Close to the source of a gushing spill, the thickness may be as much as 1.5 mm, but this quickly spreads out as it moves away from the source.

² This is the volume of mousse. The actual *oil* content depends on the oil:water ratio in the mousse.

Results of application to hypothetical spill scenarios

Cost breakdowns for the equipment/labor estimation method are shown in Tables 5 through 8. The results of the cost estimates for mechanical operations for the scenarios are shown in Table 9 through 12. Graphic comparisons of the different mechanical recovery operation cost estimation methods for the Galveston Bay scenarios are shown in Figures 2 and 3.

Table 5. Gulf of Mexico/Galveston Bay No. 2 fuel spill scenarios estimated costs for mechanical recovery based on mechanical
recovery estimations.

Spill amount (gal)	Equipment costs (\$)	Labor costs (\$)	Additional costs (\$)	Total costs ¹ (\$)
10,000	11,430	18,210	Federal: 4,000	42,544
			State: 3,500	(37,140)
			Disposal: 3,404	
			Decont.: 2,000	
100,000	231,532	225,201	Federal: 125,783	679,905
			State: 28,189	(661, 105)
			Mgt. Team: 50,400	
			Disposal: 8,800	
			Decont.: 10,000	
500,000	1,519,114	774,627	Federal: 503,132	3,210,229
,		,	State: 112,756	(3,111,229)
			Mgt. Team: 201,600	
			Disposal: 74,000	
			Decont.: 25,000	
5,000,000	5,160,081	2,989,919	Federal: 754,698	12,207,732
			State: 169,134	(9,376,232)
			Mgt. Team: 302,400	
			Disposal: 2,664,000	
			Decont.: 167,500	
10,000,000	8,657,790	4,839,463	Federal: 754,698	20,905,485
			State: 169,134	(14,723,485)
			Mgt. Team: 302,400	
			Disposal: 5,772,000	
			Decont.: 410,000	

¹ Total costs w/o disposal, equipment decontamination.

Table 6. Gulf of Mexico/Galveston Bay crude oil spill scenarios estimated costs for mechanical recovery based on mechanical recovery estimations.

Spill amount (gal)	Equipment costs (\$)	Labor costs (\$)	Additional costs (\$)	Total costs ¹ (\$)
10,000	65,396	31,471	Federal: 10,000	157,783
			State: 5,000	(128,867)
			Mgt. Team: 2,000	
			Disposal: 9,916	
			Decont.: 19,000	
100,000	847,694	369,853	Federal: 20,000	1,603,747
	-	-	State: 10,000	(1,317,547)
			Mgt. Team: 70,000	
			Disposal: 96,200	
			Decont.:190,000	
500,000	4,438,779	1,307,493	Federal:754,698	8,477,504
			State: 169,134	(6,792,504)
			Mgt. Team: 302,400	
			Disposal: 555,000	
			Decont.:950,000	
5,000,000	14,991,872	5,279,837	Federal: 1,257,830	36,288,429
			State: 281,890	(21,312,429)
			Mgt. Team: 504,000	
			Disposal: 5,476,000	
			Decont.:9,500,000	
10,000,000	27,012,809	10,757,507	Federal: 1,509,396	70,026,780
	, ,	, ,	State: 338,268	(40.222.780
			Mgt. Team: 604,800	
			Disposal: 10,804,000	
			Decont.:19,000,000	

¹ Total costs w/o disposal, equipment decontamination.

Spill amount (gal)	Equipment costs (\$)	Labor costs (\$)	Additional costs (\$)	Total costs ¹ (\$)
10,000	11,430	34,034	Federal: 4,000	58,368
			State: 3,500	(52,964)
			Disposal: 3,404	
			Decont.: 2,000	
100,000	231,532	437,959	Federal: 125,783	892,663
			State: 28,189	(873,863)
			Mgt. Team: 50,400	
			Disposal: 8,800	
			Decont.: 10,000	
500,000	1,519,114	1,510,414	Federal: 503,132	3,946,016
			State: 112,756	(3,847,016)
			Mgt. Team: 201,600	
			Disposal: 74,000	
			Decont.: 25,000	
5,000,000	5,160,081	5,830,675	Federal: 754,698	15,048,488
			State: 169,134	(12,216,988)
			Mgt. Team: 302,400	
			Disposal: 2,664,000	
			Decont.: 167,500	
10,000,000	8,657,790	9,492,014	Federal: 754,698	25,558,036
			State: 169,134	(19,376,036)
			Mgt. Team: 302,400	
			Disposal: 5,772,000	
			Decont.: 410,000	

Francisco Bay No. 2 fuel spill scenarios estimated costs for mechanical recovery based on mechanical recovery
estimations.

¹ Total costs w/o disposal, equipment decontamination.

Table 8. San Francisco Bay crude spill scenarios estimated costs for mechanical recovery based on mechanical recovery estimations.

Spill amount (gal)	Equipment costs (\$)	Labor costs (\$)	Additional costs (\$)	Total costs ¹ (\$)
10,000	70,486	59,330	Federal: 10,000	190,732
			State: 5,000	(161,816)
			Mgt. Team: 2,000	
			Disposal: 9,916	
			Decont.: 19,000	
100,000	696,998	721,723	Federal: 20,000	1,804,921
			State: 10,000	(1,518,721)
			Mgt. Team: 70,000	
			Disposal: 96,200	
			Decont.:190,000	
500,000	3,755,456	2,555,370	Federal:754,698	9,042,058
			State: 169,134	(7,537,058)
			Mgt. Team: 302,400	
			Disposal: 555,000	
			Decont.: 950,000	
5,000,000	12,882,128	10,318,493	Federal: 1,257,830	39,217,341
			State: 281,890	(24,241,341)
			Mgt. Team: 504,000	
			Disposal: 5,476,000	
			Decont.:9,500,000	
10,000,000	23,637,219	21,147,115	Federal: 1,509,396	77,040,798
			State: 338,268	(47,236,798)
			Mgt. Team: 604,800	
			Disposal: 10,804,000	
			Decont.:19,000,000	
¹ Total gosts w/o diana	col aquinment desenter	instian		

¹ Total costs w/o disposal, equipment decontamination.

Spill amount (gal)	ACP extrapolation (\$) ¹	Mechanical recovery modeling (\$) ¹	Etkin historical cost data model (\$) ²
10,000	330,014	37,140	270,000
100,000	1,175,527	661,105	970,000
500,000	2,856,633	3,111,229	4,300,000
5,000,000	10,175,469	9,376,232	10,200,000
10,000,000	14,915,323	14,723,485	20,400,000

Table 9. Estimated mechanical recovery operation costs for Gulf of Mexico off Galveston Bay No. 2 fuel oil scenarios in 1999 U.S. dollars.

¹ Excludes disposal, shoreline cleanup, and decontamination costs.

² Includes manual shoreline cleanup.

Table 10. Estimated mechanical recovery operation costs for Gulf of Mexico off Galveston Bay crude oil scenarios 1999 U.S. dollars.

Spill amount (gal)	ACP extrapolation (\$) ¹	Mechanical recovery modeling (\$) ¹	Etkin historical cost data model (\$) ²		
10,000	330,014	128,867	915,000		
100,000	1,175,527	1,317,547	5,000,000		
500,000	2,856,633	6,792,504	25,000,000		
5,000,000	10,175,469	21,312,429	110,000,000		
10,000,000	14,915,323	40,222,780	300,000,000		

¹ Excludes disposal, shoreline cleanup, and decontamination costs. ² Includes manual shoreline cleanup.

Table 11. Estimated mechanical recovery operation costs for San Francisco Bay No. 2 fuel oil scenarios 1999 U.S. dollars.

	ACP extrapolation	Mechanical recovery	Etkin historical cost		
Spill amount (gal)	$(\$)^1$	modeling (\$) ¹	data model (\$) ²		
10,000	330,014	52,964	350,000		
100,000	1,175,527	873,863	2,400,000		
500,000	2,856,633	3,847,016	8,900,000		
5,000,000	10,175,469	12,216,988	16,000,000		
10,000,000	14,915,323	19,376,036	28,000,000		

Excludes disposal, shoreline cleanup, and decontamination costs.

² Includes manual shoreline cleanup.

Table 12.	Estimated	mechanical	recovery	operation	costs for	San F	rancisco	Bay cru	ıde oil	scenarios	1999	U.S.	dollar	'S.

	ACP extrapolation	Mechanical recovery	Etkin historical cost		
Spill amount (gal)	(\$) ¹	modeling (\$) ¹	data model (\$) ²		
10,000	330,014	161,816	4,400,000		
100,000	1,175,527	1,518,721	22,000,000		
500,000	2,856,633	7,537,058	110,000,000		
5,000,000	10,175,469	24,241,341	181,000,000		
10,000,000	14,915,323	47,236,798	360,000,000		

¹ Excludes disposal, shoreline cleanup, and decontamination costs.

² Includes manual shoreline cleanup.

Figure 2. Mechanical recovery operations cost estimations for Texas No. 2 fuel scenario by different methodologies in 1999 U.S. dollars.

Figure 3. Mechanical recovery operations cost estimations for Texas crude scenario by different methodologies in 1999 U.S. dollars.

Results of dispersant application cost estimations

Cost estimations for responses involving dispersant use as a primary response strategy from the historical data model (stipulating dispersants as the response method when applying the modifiers) are shown in Figure 4. The costs are roughly 50% of those estimated for the mechanical recovery operations using the historical data model (from Etkin, 2000).

Mechanical containment and recovery cost estimations

Since the ACP extrapolation model is based solely on spill amount regardless of oil type and site-specific factors, it does not factor in the evaporation and dispersion rates of a No. 2 fuel as opposed to a crude oil so that there will be different equipment requirements, nor does it factor in that labor and equipment costs differ in California and Texas, for example. The second methodology, which estimates labor and equipment requirements, takes these factors into account and adds in additional costs for federal, state, and spill management costs, and thus is more precise.

The estimates based on the historical model are considerably higher than those of the other methods, particularly for the larger spill sizes. This is due to the fact that the estimation includes the entire response operation, *including* shoreline cleaning. The costs for the mechanical recovery operations *alone* would be roughly 15% of the total costs for spills with significant shoreline impact. Taking this into account, the adjusted estimates based on historical data are relatively close to those of the mechanical recovery modeling method, as shown for the Galveston Bay crude oil scenarios in Figure 5.

This not only supports the general validity of the historical data model, but also suggests that it may be acceptable to use this type of estimation technique when other information is not available or when a rough estimate is required (Figure 6). The model is *considerably* easier to use than extrapolating information from ACP spill scenarios and the USCG response caps information to develop a hypothetical response strategy to which to apply the estimated equipment and labor requirements to USCG BOA average equipment and labor cost tables.

Since only one methodology was possible for the dispersant cost estimation, it was not possible to test the validity of the historical model for dispersant responses. Historical data and studies on dispersant costs (Etkin 1998a, b, c) suggest that dispersant use can *significantly* reduce overall and per-unit spill response costs, in large part due to reduced shoreline impact. Cost estimates for dispersant operations using response plan strategies will be further developed in the future in order to compare various cost estimation procedures for dispersant use.

Figure 4. Response operations cost estimations with primary dispersant use (estimated with Etkin historical cost data model) in 1999 U.S. dollars.

Figure 5. Mechanical recovery operations cost estimations for texas crude scenario by different methodologies, including mechanical-only estimation for Etkin historical cost data model in 1999 U.S. dollars.

Figure 6. Comparison of mechanical recovery operations cost estimations for mechanical recovery estimation method and Etkin Historical data model for mechanical recovery only (assuming 15% total costs due to on-water operations) in 1999 U.S. dollars. (25% error bars.)

The mechanical operations part of a spill response is usually coupled with labor-intensive shoreline cleanup operations, the cost of which can be astronomical. Environmental Research Consulting is conducting further studies on various methodologies for estimating shoreline cleanup costs. These shoreline cost estimation methods will then be linked to mechanical and dispersant operation costs for a more complete picture of oil spill cleanup costs.

Conclusions

Oil spill response planners, insurers, and other stakeholders would benefit from an oil spill cleanup cost estimation methodology more precise than universal per-unit cost values that have circulated in the industry. The estimation model derived from studies of historical oil spill cost data, as described herein, offers a method for quickly estimating costs for various types of spills based on a number of factors. The comparison to estimates based on hypothetical mechanical recovery-based response plans shows reasonable reliability of the historical database model. Further development and refinement of both the historical cost model and the mechanical recovery model, as well for dispersant operation and shoreline cleanup cost models, will provide even better tools for estimating and predicting oil spill cleanup costs.

Acknowledgements

A portion of this study was funded under contract to the Transportation Research Board, National Research Council, Washington, D.C.

Biography

Dagmar Schmidt Etkin received A.M. and Ph.D. degrees from Harvard University. Her environmental science experience includes: 12 years investigating population biology and ecology, and 11 years specializing in oil/chemical spill database development, data analysis, risk assessment, and cost analyses, most recently in her own independent consulting firm, Environmental Research Consulting.

References

- Allen, A.A., and R.J. Ferek. 1993. Advantages and Disadvantages of Burning Spilled Oil. *Proceedings*, 1991 International Oil Spill Conference. American Petroleum Institute, Washington, DC. pp. 765–772.
- Etkin, D.S. 1998a. Factors in the Dispersant Use Decision-Making Process. *Proceedings*, Twenty-First Arctic and Marine Oilspill Program (AMOP) Technical Seminar. Environment Canada, Ottawa, Ontario. pp. 281–304.

- 3. Etkin, D.S. 1998b. *Financial Costs of Oil Spills in the United States*. Cutter Information Corp., Arlington, MA.
- Etkin, D.S. 1998c. Financial Costs of Oil Spills Worldwide. Cutter Information Corp., Arlington, MA.
- Etkin, D.S. 1999. Estimating Cleanup Costs for Oil Spills. *Proceedings*, 1999 International Oil Spill Conference. American Petroleum Institute, Washington, DC.
- Etkin, D.S. 2000. Worldwide Analysis of Oil Spill Cleanup Cost Factors. *Proceedings*, Twenty-Third Arctic and Marine Oilspill Program (AMOP) Technical Seminar. Environment Canada, Ottawa, Ontario. pp. 161–174.
- Harper, J., A. Godon, and A. Allen. 1995. Costs Associated with the Cleanup of Marine Oil Spills. *Proceedings*, 1991 International Oil Spill Conference. American Petroleum Institute, Washington, DC. pp. 167–176.
 Michel, J., and M. Cotsapas. 1997. Assessment of the
- 8. Michel, J., and M. Cotsapas. 1997. Assessment of the Cleanup Costs Resulting From Platform Spills in the Gulf

of Mexico Offshore of Apalachicola Bay, Florida. Research Planning, Inc., Columbia, SC.

- Moller, T.D., H.D. Parker, and J.A. Nichols. 1987. Comparative Costs of Oil Spill Cleanup Techniques. *Proceedings*, 1987 International Oil Spill Conference. American Petroleum Institute, Washington, DC. pp. 123–127.
- 10. Monnier, I. 1994. The Costs of Oil Spills After Tanker Accidents. Det Norske Veritas Research A/S, Høvik, Norway.
- Peck, J., B. Dufour, and V. Peck. 1996. Cost Accounting and Oil Spills. *Proceedings*, Nineteenth Arctic and Marine Oilspill Program (AMOP) Technical Seminar. Environment Canada, Ottawa, Ontario. pp. 285–314.
- USCG (U.S. Coast Guard). 1999. Response Plan Equipment Caps Review [draft report]. Office of Response, U.S. Coast Guard Headquarters, Washington, DC, August 1999.

¹ Galveston Bay Area Contingency Plan Annex I: Oil Spill Scenarios (1994); Galveston Bay Area Contingency Plan Annex E: Area Assessments (1996); Area Contingency Plan for the California North Coast, San Francisco Bay, and Delta, and Central Coast, Volumes I-III (1997); Philadelphia Area Contingency Plan (1998); Baltimore Area Contingency Plan (1998); and Marine Safety Office Port Arthur Area Contingency Plan [draft] (1999).