Presented at Arctic and Marine Oilspill Program (AMOP) Technical Seminar June 2002

Analysis of Past Marine Oil Spill Rates and Trends For Future Contingency Planning

Dagmar Schmidt Etkin Environmental Research Consulting Winchester, Massachusetts, USA etkin@environmental-research.com

Abstract

Analyses of thirty years of US and international marine oil spill data have revealed that spillage rates have generally decreased despite overall increases in oil production and transportation (Etkin, 2001). At the same time, occasional large spills – along with increasing expectations of effective spill response – have necessitated complex contingency planning for increasingly rare high-impact events.

Past oil spill trends for vessels from 1985-2000 and potential future spill rates in light of improvements implementation of double hulls on tankers and bunker tanks are analyzed with regard to future contingency planning needs in the US. A methodology for determining "theoretical" and "most-likely" worst-case oil spill scenarios for contingency planning for ports will be described.

1 Introduction

Analyses of US and international marine oil spill data reveals that rates of spillage have generally decreased worldwide and in the US despite overall increases in oil transport (Etkin, 2001). However, occasional large spills — along with an increasing expectation and obligation to respond effectively to such spills — have necessitated complex contingency planning for increasingly rare high-impact events along with more probable events. Determining what to expect and plan for in terms of worst-case discharges and most-probable discharges proves to be a challenge for contingency planners worldwide.

2 Methodology

2.1 Definitions

Terms were defined as follows:

• *Allision:* striking of a moving object into a stationary object. In the case of vessels, this includes a vessel striking a stationary object, e.g., a pier, or a vessel being struck by another vessel while the first vessel is stationary.

- *Collision:* impact of two vessels each of which is in motion.
- *Historical worst-case discharge (WCD):* spill size that represents that largest *recorded (historical)* spill size from a particular source type for a particular location.
- *Illegal discharges:* all spills due to intentional discharges, bilge pumping, or other activities, or unintentional discharges not related to accidents or failures.
- *Most-probable worst-case discharge (WCD):* largest spill size expected based on historical US national data on the maximum recorded percent cargo or fuel loss;

this volume is generally less than the theoretical worst-case discharge (WCD) unless the total loss of cargo or fuel has occurred.

• *Percentile spills:* n^{th} percentile spill is that spill volume larger than n% of spills for that source and type and is smaller than 100 - n% of spills; e.g., the spill size for the "10th percentile spill" is defined as the spill size larger than 10% of all spills, but smaller than 90% of all spills.

• *Potential spill sizes:* spill volumes for historical spills that represent amounts that would have spilled if theoretical worst-case discharges (WCD) had occurred.

• *Probability distribution function (PDF):* graphed curve (function) showing cumulative probabilities of spill sizes from which percentile spills can be determined.

• *Structural failure:* breaking apart of any part of a vessel that is not attributable to a collision, allision, or grounding, but rather due to weakness or wearing of the structure of the vessel, e.g., corrosion, or due to the impact of weather or waves.

• *Theoretical worst-case discharge (WCD):* size of the largest *possible* oil spill from a particular source (e.g., the total oil cargo or fuel on a vessel).

2.2 Vessel Spill Scenario Methodology

Vessel types included in the analyses of spill scenarios included: tankers, barges, and freighters (bulk carriers, container vessels, cargo vessels), fishing vessels, and passenger vessels over 300 GRT. Data from the Environmental Research Consulting databases for oil spills into US navigable waterways from vessels over 300 GRT during 1985-2000 were analyzed to develop probability distribution functions (PDFs) of *actual* spill volumes and *potential* spill volumes (theoretical worst-case discharges based on cargo or bunker capacity). The PDFs were analyzed to determine various percentile spills, and worst-case discharges (WCDs).

The vessel spill data were also analyzed to determine the percentage of cargo or bunker fuel spilled for each incident involving an accidental cause (collision, grounding, allision, sinking, structural failure, and/or fire/explosion). Cargo tanks were assumed to be 80% full and bunker tanks were assumed to be 70% full, based on standard methodologies employed by tanker engineers and naval architects (Michel and Thomas, 2000; Rawson, et al., 1998). The percentage of spills representing the different percent cargo or fuel losses were calculated.

Theoretical future oil spill volumes were determined based on application of cargo- and fuel-loss percentages and probabilities for different-sized and types of vessels from US data onto the vessel sizes/types transiting Washington waters and San Francisco Bay. This provided an analysis of the potential spill volumes that should be prepared for in Washington state waters and San Francisco Bay given current vessel traffic. The 10^{th} -, 25^{th} -, 50^{th} -, 75^{th} -, 90^{th} , and 95^{th} -percentile spills and most-probable worst-case discharge and theoretical worst-case discharge were determined for all vessel types (over 300 GRT) for Washington waters.

The oil spills that occurred in Washington State between 1985-2000 were analyzed to determine historical and potential PDFs and percentile spills. This analysis provides an examination of the types of spills that have occurred and the spill volumes that those incidents would have involved had there been theoretical WCDs.

Theoretical future oil spill volumes specifically from groundings by deepdraft vessels were determined based on application of the cargo- and fuel-loss percentages and probabilities for different-sized and types of vessels from US national and international data onto the vessel sizes and types that transit San Francisco Bay. The analysis focused on vessels drafts deep enough to ground on rock pinnacles present in San Francisco Bay.

These analyses do not provide an assessment of the actual risk of an oil spill occurring in US waters, San Francisco Bay, or Washington State waters, but only an assessment of the types of spill volumes that might be expected when spills do occur. A theoretical worst-case discharge (total loss of oil cargo) from a fully-loaded large tanker did not occur in US waters during 1985-2000, though a few such incidents (involving the sinking or hard drift groundings of fully-loaded tankers) have occurred in foreign waters and two incidents involving smaller tankers occurred in US waters prior to 1985 (Tables 1 - 2). It is theoretically possible for such a spill to occur in San Francisco Bay, Washington State and other parts of the US.

Table 1Worst-Case Discharge Tanker Spills In Non-US Waters (1985-2000)(not including military-related incidents) (DWT>10,000)

Date	Tanker (DWT)	Est. Cargo ¹	Amt. Spilled	% Loss	Location	
Apr-88	Athenian Venture (31,016)	10,602,000 gal (36,061 t)	10,602,000 gal (36,061 t)	100%	Canada	
Nov-88	Odyssey (140,616)	43,100,000 gal (146,600 t)	43,100,000 gal (146,600 t)	100%	Canada	
Oct-94	Thanassis A. (38,263)	10,900,000 gal (37,075 t)	10,900,000 gal (37,075 t)	100%	Hong Kong	
Jun-85	Kinsei Maru (2,990)	840,000 gal (2,857 t)	840,000 gal (2,857 t)	100%	Japan	
Apr-92	Katina P. (69,992)	19,609,800 gal (66,700 t)	19,609,800 gal (66,700 t)	100%	South Africa	
Jan-93	Braer (89,730)	25,000,000 gal (85,034 t)	25,000,000 gal (85,034 t)	100%	UK	
Jan-94	Cosmas A. (27,643)	7,081,000 gal (24,085 t)	7,081,000 gal (24,085 t)	100%	Hong Kong	
Jan-01	Ife (10,671)	3,386,292 gal (11,518 t)	3,386,292 gal (11,518 t)	100%	Nigeria	
Jun-97	Da Qing 243 (24,704)	7,473,600 gal (25,320 t)	5,000,000 gal (17,000 t)	82%	China	
Dec-92	Aegean Sea (114,036)	34,500,000 gal (117,343 t)	21,900,000 gal (74,490 t)	78%	Spain	
Apr-91	Haven (232,163)	70,235,300 gal (238,896 t)	42,336,000 gal (144,000 t)	74%	Italy	
¹ Cargo capacity estimated from deadweight tonnage (assumed 80% full).						

Source: Environmental Research Consulting

3 US Tanker Oil Spill Analysis

3.1 US Tanker Spills – All Spill Causes

The actual and potential (theoretical) WCD spill sizes for tanker spills in US waters, *regardless of the cause* of the spills, is shown in Figure 1. The "potential spills" represent the size of spills that would have occurred if each of the actual incidents had involved the loss of the entire tanker's cargo contents. Excluding all spills of less than 1,000 gallons (3.4 tonnes) (which excludes most lightering, illegal spillage incidents, etc.), the same curves are shown in Figure 2.

PDFs for actual spill sizes and potential (theoretical) WCDs for tanker spills in US waters produced the percentile spills shown in Table 3. This analysis shows WCDs for all types of spills regardless of cause. Since in practicality, the WCDs may not be applicable for spills related to bunkering, lightering, and loading activities, or other discharges not directly related to an accident, such as a grounding or collision. For this reason, the analyses were repeated based on spill cause.

Date	Tanker (DWT)	Estimated Cargo ¹	Amt. Spilled	Loss	Location		
Feb-	Hawaiian Patriot	31,185,000 gal	31,185,000 gal	1000/	Pacific Ocean		
77	(101,038)	(106,070 t)	(106,070 t)	100%	595 km off Hawaii		
Feb-	Pegasus	9,597,000 gal	9,597,000 gal	1000/	N Atlantic Ocean		
68	(30,000)	(32,643 t)	(32,643 t)	100%	off Maine		
Feb-	Mandoil II	12,930,120 gal	12,930,120 gal	07%	Pacific Ocean		
68	(42,000)	(43,980 t)	(43,980 t)	9770	off Oregon		
Jan-	Gezina Brovig	4,925,760 gal	4,704,000 gal	05%	Caribbean Sea,		
70	(16,000)	(16,754 t)	(16,000 t)	9370	off NW Puerto Rico		
Nov-	Keo	9,235,800 gal	8,800,000 gal	050/	N Atlantic Ocean 200 km		
69	(30,000)	(31,414 t)	(29,932 t)	9370	off Massachusetts		
Apr-	Spartan Lady	6,380,091 gal	6,000,000 gal	0.49/	Atlantic Ocean		
75	(20,724)	(21,700 t)	(20,408 t)	9470	32 km SE New York		
May-	Epic Colocotronis	19,703,040 gal	17,955,000 gal	01%	Caribbean Sea		
75	(64,000)	(67,017 t)	(61,071t)	9170	100 km NW Puerto Rico		
Oct-	Gulfstag	6,157,200 gal	5,586,000 gal	010/	Gulf of Mexico		
66	(20,000)	(20,943 t)	(19,000 t)	9170	off Texas		
Mar-	Texaco Oklahoma	10,797,266 gal	9,450,000 gal	880/	N Atlantic Ocean		
71	(35,072)	(36,725 t)	(32,143 t)	8870	off Maine		
Dec-	Argo Merchant	8,832,811 gal	7,700,000 gal	970/	Atlantic Ocean 40 km		
76	76 (28,691) (30,044 t) (26,190 t) 87% ESE Massachusetts						
¹ Cargo	capacity estimated fr	om deadweight ton	nage (assumed 80%	6 full).			
Source	: Environmental Rese	arch Consulting Da	atabases				

Table 2Worst-Case Oil Discharges From Tankers In and Near US Waters

Figure 1 Actual Tanker Spill Sizes Vs. Potential Worst-Case Discharge Spill Sizes For Tanker Spills in US Waters (1985-2000)

Figure 2 Actual Vs. Potential WCD Spill Sizes For Tanker Spills Over 1,000 Gallons in US Waters (1985-2000)

Table 3	Actual Vs. Potential Oil Spill Volumes From Tankers In US Waters
(1985-2000) -	All Causes

Percentile Spill	Actual	Potential				
10 th percentile	35 gal	1,100,000 gal				
25 th percentile	70 gal	6,000,000 gal				
50 th percentile	125 gal	10,000,000 gal				
75 th percentile	600 gal	21,000,000 gal				
90 th percentile	6,000 gal	30,000,000 gal				
95 th percentile	30,000 gal	55,000,000 gal				
Worst Case Discharge ¹	11,000,000 gal	108,000,000 gal				
¹ Actual WCD = historical WCD or most-probable WCD; Potential WCD =						
theoretical WCD.						

3.2 US Tanker Spills – Accidents

The actual and potential oil spill volumes from tanker accidents involving collisions, allisions, and groundings are shown in Figure 3. The corresponding PDFs are shown in Figures 4 - 5. The "potential spills" represent the size of spills that would have occurred if the incidents had involved the loss of the entire tanker's cargo contents. The percent cargo loss (assuming 80% capacity) and the probability of each percent loss (represented by the percent total spill) are shown in Figure 6. The analysis was repeated for tanker spills involving structural failure, fires or explosions, and sinking, as shown in Figures 7 - 10.

3.3 US Tanker Spills - Lightering/Loading and Pollution Incidents

Tanker spills in US waters related to lightering, loading, and refueling were analyzed to develop the PDF shown in Figure 11. Incidents related to other causes, e.g., illegal discharges, and bilge washing, were analyzed to develop the PDF in Figure 12. Spills

from lightering, loading, and refueling, as well as other pollution incidents tend to be smaller than those related to accidents.

Figure 3 Actual Tanker Spills Vs. Potential Tanker Spills Due to Allisions, Collisions, and Groundings (US Waters 1985-2000)

Figure 4PDF of Actual Oil Spill SizesFrom Tanker Allisions, Collisions, and Groundings In US Waters 1985-2000

4. US Barge Oil Spill Analysis 4.1 US Barge Spills – Accidents

The same analyses were performed for barge spills due to accidents, again separating collisions, allisions, and groundings from other structural failures, sinking, and explosions. The results are shown in Figures 13 - 16 for accidents involving collision, allision, or grounding, and in Figures 17 - 20 for accidents involving

structural failure, sinking, or explosion/fire. The smaller amount of cargo generally present on barges makes these incidents tend to be smaller than tanker spills.

Figure 5 PDF of Potential WCD (US Tanker Allisions, Collisions, Groundings) in US Waters (1985 – 2000)

Figure 6 Percentage Cargo Spilled in Tanker Groundings, Allisions, and Collisions Resulting in Oil Spillage in US Waters 1985-2000

4.2 US Barge Spills – Lightering/Loading and Pollution Incidents

As with tankers, smaller incidents can occur during lightering and loading, as well as illegal discharges and other pollution events, in the spill sizes shown in the PDFs in Figures 21 - 22.

Figure 7 Actual Vs. Potential Worst-Case Discharge Spillage in Other Tanker Accidents US Waters 1985-2000 (Structural Failure, Fire, Sinking)

Figure 8 PDF of Oil Spillage From Tanker Accidents (Structural Failure, Fire, Sinking) In US Waters 1985-2000

5 US Freight Vessel Oil Spill Analysis

5.1 Freight Vessel Accidents

Freighters can spill oil in bunker fuel tanks in accidents. Analysis results for allisions, collisions, and groundings are shown in Figures 23 - 26, and for structural failure, explosion/fire, and sinking in Figures 27 - 30.

Figure 9 PDF of Potential WCD Spillage For Tanker Accidents (Structural Failure, Fire, Sinking) In US Waters (1985-2000)

Figure 10 Percentage Cargo Spilled In Other Tanker Accidents (Structural Failure, Fire, Sinking) in US Waters (1985-2000)

5.2 Freight Vessel Bunkering/Fueling Incidents

PDFs of spill size for incidents involving bunkering/fueling, and illegal discharges are shown in Figures 31 - 32.

Figure 11 PDF of Oil Spill Volumes From Tanker Lightering/Loading/ Bunkering Activities In US Waters (1985-2000)

Figure 12 PDF of Oil Spill Sizes From Illegal Discharges and Other Pollution Incidents From Tankers In US Waters (1985-2000)

Figure 13 Actual Vs. Potential Oil Spillage From Tank Barge Accidents (Allisions, Collisions, and Groundings) In US Waters (1985-2000)

Figure 14 PDF of Oil Spill Sizes From Tank Barge Accidents (Allisions, Collisions, Groundings) In US Waters (1985-2000)

6 All Vessel Type Analysis

The analyses were also performed for bunkering/fueling and illegal discharge incidents for fishing vessels and passenger vessels over 300 GRT. The actual and potential spill volumes for all vessel types by spill cause are shown in Table 4. Note that there are no potential volumes calculated for fueling/bunkering or illegal discharges as it is assumed that these incidents are not likely to involve the release of the entire fuel tanks as might occur in a casualty involving allision, collision, grounding, structural failure, fire/explosion, or sinking.

Figure 15 PDF of Potential Worst-Case Discharge Spill Volumes For Tank Barge Accidents (Allisions, Collisions, Groundings) In US Waters (1985-2000)

Figure 16 % Cargo Outflow From Tank Barge Accidents (Allisions, Collisions, Groundings) In US Waters (1985-2000)

Figure 17 Actual Vs. Potential Worst-Case Discharge Oil Spill Volumes From Tank Barge Accidents (Structural Failure, Fire, Sinking) In US Waters (1985-2000)

Figure 18 PDF For Actual Oil Spills From Tank Barge Accidents (Structural Failure, Fire, Sinking) In US Waters (1985-2000)

Figure 19 PDF of Potential Worst-Case Discharge Spill Volume For Tank Barge Accidents (Structural Failure, Fire, Sinking) In US Waters (1985-2000

7 Application to Specific Ports and Regional Circumstances

The types of spill scenarios that local or regional contingency planners should prepare for depend on local vessel traffic and the types of oils that typically are carried both by oil cargo carriers (tankers and tank barges) and as fuels by non-tank cargo vessels, and fishing and passenger vessels.

Figure 20 Percentage Oil Cargo Lost in Tank Barge Accidents (Structural Failure, Fire, Sinking) In US Waters (1985-2000)

Figure 21 PDF of Barge Lightering/Loading Spills In US Waters (1985-2000)

7.1 Washington State Spill Scenario Planning

Typical annual vessel traffic through Puget Sound, Washington, is shown in Table 5. The calculated theoretical spill scenarios for contingency planning for this region are shown in Table 6. The sizes of the largest tanker spills are limited to just under 33 million gallons as this is the maximum oil cargo permitted in Washington

state waters. The most-probable WCDs are based on the releases seen in accidents in the US. The theoretical WCDs are based on the maximum cargo sizes (assuming 80% full capacity).

Figure 22 Volume PDF of Illegal Discharge/Pollution for US Barges (1985-2000)

Figure 23 Actual vs. Potential Worst-Case Discharge Spill Sizes For Freighter Accidents (Allisions, Collisions, Groundings) In US Waters (1985-2000)

7.2 San Francisco Bay Deep Draft Vessel Groundings

For a project to determine potential spill volumes from deep draft vessel groundings in San Francisco Bay (see Etkin, et al., 2002; McCay, et al., 2002), PDFs of potential spill volumes was developed based on tanker traffic in the bay (Table 7) and the percent cargo losses and probabilities of loss specifically from tanker groundings as shown in Table 8. PDFs for spills from product tankers and crude tankers in Figures 33 and 34, respectively.

Since the project involved projecting spill volumes for the future, the impact of the implementation of double hulls was applied to these PDFs based on the

Figure 24 PDF of Oil Spill Size From Freight Ship Accidents (Allisions, Collisions, Groundings) In US Waters (1985-2000)

Figure 25 PDF of Potential Worst-Case Discharge Oil Spills From Freight Ship Accidents (Allisions, Collisions, Groundings) In US Waters (1985-2000)

Figure 26 Bunker Fuel Spilled In Freight Ship Accidents (Allisions, Collisions, Groundings) In US Waters (1985-2000)

Figure 27 Actual Vs. Potential Worst-Case Discharge Oil Spill Volumes From Freighter Accidents (Structural Failure, Fire, Sinking) In US Waters (1985-2000)

principles in Table 9. The resulting spill scenarios are shown in Table 10. If this procedure were to be applied to spills from bunker/fuel tanks on non-tank vessels, adjustments to spill size would not be necessary as double hulls on bunker tanks. While decreasing the probability of spillage upon impact, double hulls on bunker tanks are likely to allow the release of just as much oil as single hulled tanks once breached (Michel and Thomas, 2000).

Figure 28PDF of Oil Spill Volumes From Freighter Accidents (Structural
Failure, Fire, Sinking) In US Waters (1985-2000)

Figure 29 PDF of Worst-Case Discharge Oil Spill Volumes From Freighter Accidents (Structural Failure, Fire, Sinking) In US Waters (1985-2000)

Figure 30 % Bunker Fuel Spilled In Freighter Accidents (Structural Failure, Fire, Sinking) In US Waters (1985-2000)

Figure 31 PDF of Oil Spill Volumes For Bunkering/Fueling Spills From Freighters In US Waters (1985-2000)

8 Conclusions

The methodology for determining actual and potential spill volumes, as well as for developing discharge scenarios for contingency planning purposes is adaptable to a variety of situations, including those specific to circumstances in a particular port or region or for a particular vessel type or casualty cause.

9 Acknowledgements

This study was funded in part under contracts with Washington Department of Ecology Spills Program and US Army Corps of Engineers - San Francisco District (contract DACW07-01-R-0001). Keith Michel, Herbert Engineering, Inc., Alameda, California, USA, provided information on outflow analyses for tanker and bunker fuel tanks.

Dercentile Spills (gellons) Actual Spill Volumes/Detential Warst Case Discharge							
Spill Type	10th	25th	50th	75th	00th	05th	WCD
Taplara	50	23th 70	120	/3til	90til	95til	10 500 000
	30	/0	130	600	0,000	11,300	10,300,000
ALL	n/a	n/a	n/a	n/a	n/a	n/a	n/a
I ankers	200	900	6,500	40,000	250,000	275,000	10,500,000
Collis/All/Grou	600,000	6,000,000	8,000,000	15,000,000	25,000,000	40,000,000	80,000,000
Tankers	70	120	350	6,000	30,000	200,000	4,000,000
StructFail/Fire	1,500,000	6,500,000	15,000,000	25,000,000	34,000,000	41,000,000	70,000,000
Tankers	1	2	6	50	300	1,000	100,000
Lightering/Loading ²	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Tankers	1	1	3	10	200	500	50,000
Illegal Discharge ²	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Barges	1	2	10	60	400	2,000	2,000,000
ALL	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Barges	2	30	200	5,000	30,000	60,000	800,000
Coll/All/Grou	600,000	800,000	1,000,000	1,500,000	3,100,000	4,500,000	20,000,000
Barges	1	2	10	85	700	4,000	800,000
StructFail/Fire/Sink	500,000	700.00	850,000	1.100.000	2,300,000	4.000.000	14.000.000
Barges	1	2	20	110	300	800	155.000
Lightering/Loading ²	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Barges	1	1	2	20	200	1 000	195,000
Illegal Discharge ²	n/a	n/a	<u></u> n/a	<u>20</u> n/a	n/a	n/a	n/a
Freighters	1/a	1/a	8	50	200	1,000	350,000
	1 n/a	1 n/a	0 n/a	50 n/a	200	1,000	550,000 n/a
Eroightorg	11/a	11/a	11/a	10,100	11/a	11/a	250,000
Coll/All/Crow	15 000	52,000	300	240,000	270,000	82,000	330,000
Coll/All/Olou	13,000	32,000	120,000	240,000	270,000	370,000	440,000
Freighters	12 000	3	20	150	7,500	12,000	25,000
Structrall/File/Slink	12,000	18,000	40,000	180,000	220,000	280,000	320,000
Freighters	1	1	8	50	200	600	23,300
Bunkering	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Freighters	1	1	5	40	300	400	93,000
Illegal Discharges	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Fishing Vessels	l	2	5	25	200	500	120,000
ALL	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Fishing Vessels	2	10	300	7,000	60,000	80,000	100,000
Accidents	40,000	45,000	65,000	85,000	110,000	140,000	190,000
Fishing Vessels	1	2	4	10	25	30	35
Fueling ²	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Fishing Vessels	1	3	9	30	200	400	120,000
Illegal Discharge ²	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Passenger Vessels	1	1	12	45	200	400	7,500
ALL	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Passenger Vessels	2	15	40	200	400	6,000	8,000
Accidents	1,000	3,000	5,000	70,000	200,000	225,000	300,000
Passenger Vessels	1	2	15	60	200	300	1,000
Fueling ²	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Passenger Vessels	1	1	9	30	100	300	5,300
Illegal Discharge ²	n/a	n/a	n/a	n/a	n/a	n/a	n/a
¹ Potential WCD (complete loss) based on 80%-full cargo tanks 70%-full bunker tanks ² WCD not defined for							
pollution incidents lie	phtering de	-ballasting	cargo loadi	ng/unloading	intentional a	lischarges an	d discharges
not accident-related	Percentile s	pills = % sr	ills <i>smaller</i>	than size(95 th	>95% snills	s (5% larger 9	5% spills
smaller)		r0 /00p			2270 Spin	(2,0101 B0 1,)	- · · · · · · · · · · · · · · · · · · ·

Table 4 Actual VS. Potential WCD US Vessel OII Spinage (1983-20	Table 4	Actual Vs. Potential V	WCD US Vessel	Oil Spillage	(1985-2000
---	---------	------------------------	---------------	--------------	------------

Veggel Type	Veggel Cine	Oil Moveme	Transits		
vesser Type	vesser Size	Crude	Refined	Fuel	Per Year
Crus de tembren	<75,000 DWT	16,844,000		352,200	79
(ladan)	75,000-110,000 DWT	22,000,000		396,300	81
(ladell)	>110,000 DWT	32,718,000		660,450	138
Crude tanker (ballast)	avg. 67,000 DWT			352,200	6
Product tanker	avg. 22,000 DWT		4,376,000	330,200	12
(laden)	avg. 55,000 DWT		10,941,000	176,100	23
Product tanker	avg. 22,000 DWT			330,200	20
(ballast)	avg. 55,000 DWT			176,100	179
Product barge	avg. 6,000 DWT		1,910,000	47,000	5
(laden)	avg. 12,000 DWT		3,819,000	47,000	18
	<50,000 DWT			143,100	1,913
Bulk carrier	50,000-100,000 DWT			242,200	501
	>100,000 DWT			440,300	122
Bulk liquid carrier				176,100	186
	<2,500 TEU			264,200	435
Containership	2,500-4,000 TEU			484,300	510
	>4,000 TEU			825,600	394
Vehicle carrier	-			297,200	316
Factory fishing	300-3,000 GRT			54,000	59
vessel	>3,000 GRT			165,100	112
Fishing boat	>300 GRT			26,400	167
Passenger	300-3000 GRT			52,800	16
vessel	>3,000 GRT			140,900	11
Adapted from He	erbert Engineering, et al. 1	999			

Table 5Vessel and Oil Movements Through Puget Sound, Washington (2000)

	Percentile Spills (gallons)							
Spill Cause(s)	10th	25th	50th	75th	90th	95th	Most Probable WCD	Theoretical WCD
Tanker Collision/ Allision Grounding	400,000	500,000	700,000	900,000	2,000,000	2,400,000	12,000,000	32,718,000
Tanker Structural Failure Fire/Sinking	1,500	2,000	3,000	15,000	150,000	2,000,000	3,800,000	32,718,000
Barge Collision Allision Grounding	40	200	800	10,000	80,000	287,000	880,000	3,800,000
Barge Structural Failure Fire/Sinking	10	15	20	200	1,000	23,000	1,031,000	3,800,000
Freighter Collision/ Allision Grounding	10	60	310	5,800	36,000	54,000	825,600	825,600
Freighter Structural Failure Fire/Sinking	2	5	70	500	58,000	210,000	825,600	825,600
Fishing Vessel Accidents	1	10	310	5,800	36,000	54,000	165,100	165,100
Passenger Vessel Accidents	1	90	400	1,000	15,000	53,000	141,000	141,000

Table 6Theoretical Potential Oil Spill Scenarios From Tankers InWashington State Waters Based on Modeling of US Spill Data

Deadweight Tonnage Class (DWT)	Annual Transits >36.7-Ft. Draft	Cargo Capacity tonnes (gallons) (80% full)
20,000 – 45,000 DWT	24	36, 700 tonnes (10,790,000 gal)
50,000 - 70,000 DWT	32	53,900 tonnes (15,850,000 gal)
75,000 – 90,000 DWT	17	68,700 tonnes (20,190,000 gal)
95,000 – 110,000 DWT	22	91,400 tonnes (26,880,000 gal)
115,000 – 145,000 DWT	15	133,400 tonnes (39,230,000 gal)
150,000 – 170,000 DWT	57	145,400 tonnes (42,750,000 gal)
175,000 – 190,000 DWT	42	155,100 tonnes (45,590,000 gal)
195,000 – 215,000 DWT	23	184,200 tonnes (54,160,000 gal)

Table 7Cargo Capacity of Tankers (> 36.7-Ft. Draft) Transiting San FranciscoBay By Deadweight Tonnage Size Class

Table 8	Spill Sizes	For Tanker	Groundings	in San	Francisco	Bay
1 4010 0	Spin Sizes	I OI I united	Oroundings	III Dull	1 Tune 1500	Duy

		Tanker	Capacity ²		D 1 1 11 C		
0/ Carea	14,500,000	25,000,000	44,000,000	55,000,000	Probability of		
⁷⁰ Cargo	gal	gal	gal	gal	if Spill		
L055	Product	Product	Crude	Crude	$Occurs^1$		
	Tanker	Tanker	Tanker	Tanker	Occurs		
20% loss	2,900,000	5,000,000	8,800,000	11,000,000	3.6%		
14% loss	2,030,000	3,500,000	6,160,000	7,700,000	3.6%		
10% loss	1,450,000	2,500,000	4,400,000	5,500,000	8.9%		
8% loss	1,160,000	2,000,000	3,520,000	4,400,000	5.4%		
5% loss	725,000	1,250,000	2,200,000	2,750,000	8.9%		
2% loss	290,000	500,000	880,000	1,100,000	21.4%		
1% loss	145,000	250,000	440,000	550,000	23.2%		
0.2% loss	29,000	50,000	88,000	110,000	25.0%		
Annual	56	20	114	22	232 total		
Transits ³	50	39	114	25	transits		
¹ Based on analysis of 1980-1999 tanker groundings in US waters and 1990-1999							
groundings	in internation	nal waters; ² A	Assuming 80%	6 full cargo tan	iks		
³ Based on U	IS Coast Gua	ard Vessel Tr	affic Service	data (8/2000 -	7/2001)		

Minimum Spill Size (gallons)

Figure 33 Cumulative Probability of Oil Spill Size From Product Tanker Groundings on Rock Pinnacles in San Francisco Bay

Figure 34 Cumulative Probability of Oil Spill Size From Crude Tanker Groundings on Rock Pinnacles in San Francisco Bay

Table 9Influence of Double Hulls on Future Spill Risks						
Voscal Tank	Influence of Double Hulls					
Type	Spill Probability	Small to Median	Size Lorgest Spills			
турс	Grounding/Collision/Allision	Spill Size	Size Largest Spiris			
Tanker Cargo	Reduced	No effect	Reduce size by 50%			
Vessel Bunker	Reduced	No effect	No effect			
Based on Herbert Eng. et al., 1999; Michel & Thomas 2000; Rawson, et al. 1999						

Table 10 Double Hull Impact on Tanker Grounding Spills In San Francisco Bay

Tanker Type	Expected Spill Volumes (gallons)				
	20 th %	50 th %	95^{th} %	Most-Probable WCD	Theoretical WCD
Single hull Product	50,000	270,000	2,500,000	5,000,000	25,000,000
Double hull Product	50,000	270,000	1,250,000	2,500,000	25,000,000
Single hull Crude	100,000	600,000	6,000,000	11,000,000	55,000,000
Double hull Crude	100,000	600,000	3,000,000	5,500,000	55,000,000

10 References

Etkin, D.S. "Analysis Of Oil Spill Trends in the US and Worldwide", in *Proceedings* of the 2001 International Oil Spill Conference: pp. 1,291-1,300, 2001

Etkin, D.S., D.F. McCay, N. Whittier, S. Sankaranarayanan, and J. Jennings. "Modeling of Response, Socioeconomic, and Natural Resource Damage Costs for Hypothetical Oil Spill Scenarios in San Francisco Bay", in *Proceedings of the 25th Arctic and Marine Oilspill Program Technical Seminar*: current volume, 2002.

Herbert Engineering Corp. and Designers & Planners, Inc. *Use of Tugs to Protect Against Oil Spills in the Puget Sound Area*. US Coast Guard Report 9522-001, November 1999.

McCay, D.F., N.Whittier, S. Sankaranarayanan, J. Jennings, and D.S. Etkin. "Modeling Fates and Impacts for Bio-Economic Analysis of Hypothetical Oil Spill Scenarios in San Francisco Bay", in *Proceedings of the 25th Arctic and Marine Oilspill Program Technical Seminar*: current volume, 2002.

Michel, K. and W. Thomas. "Cargo Ship Bunker Tankers: Designing to Mitigate Oil Spills", in *SNAME Marine Technology*, October 2000.

Rawson, C. et al. "Assessing the Environmental Performance of Tankers in Accidental Grounding and Collision", in *Society of Naval Architects and Marine Engineers (SNAME) Transactions*, 1998.